Loss of circadian rhythmicity in aging mPer1-/-mCry2-/- mutant mice.
نویسندگان
چکیده
The mPer1, mPer2, mCry1, and mCry2 genes play a central role in the molecular mechanism driving the central pacemaker of the mammalian circadian clock, located in the suprachiasmatic nuclei (SCN) of the hypothalamus. In vitro studies suggest a close interaction of all mPER and mCRY proteins. We investigated mPER and mCRY interactions in vivo by generating different combinations of mPer/mCry double-mutant mice. We previously showed that mCry2 acts as a nonallelic suppressor of mPer2 in the core clock mechanism. Here, we focus on the circadian phenotypes of mPer1/mCry double-mutant animals and find a decay of the clock with age in mPer1-/- mCry2-/- mice at the behavioral and the molecular levels. Our findings indicate that complexes consisting of different combinations of mPER and mCRY proteins are not redundant in vivo and have different potentials in transcriptional regulation in the system of autoregulatory feedback loops driving the circadian clock.
منابع مشابه
Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice.
Many biochemical, physiological, and behavioral processes display daily rhythms generated by an internal timekeeping mechanism referred to as the circadian clock. The core oscillator driving this clock is located in the ventral part of the hypothalamus, the so called suprachiasmatic nuclei (SCN). At the molecular level, this oscillator is thought to be composed of interlocking autoregulatory fe...
متن کاملPhase responses to light pulses in mice lacking functional per or cry genes.
The phase-resetting properties of the circadian system in mice with a functional deletion in mCry1, mCry2, mPer1, or mPer2 were studied in 2 experiments. In experiment 1, mCry1(-/-) and mCry2(-/-) mice as well as mPer1(Brdm1) and mPer2(Brdm1) mutant mice were exposed to 15-min light pulses during the 1st cycle following entrainment, either early (external time [ExT] 20) or late (ExT 4) in the s...
متن کاملDifferential Functions of mPer1, mPer2, and mPer3 in the SCN Circadian Clock
The role of mPer1 and mPer2 in regulating circadian rhythms was assessed by disrupting these genes. Mice homozygous for the targeted allele of either mPer1 or mPer2 had severely disrupted locomotor activity rhythms during extended exposure to constant darkness. Clock gene RNA rhythms were blunted in the suprachiasmatic nucleus of mPer2 mutant mice, but not of mPER1-deficient mice. Peak mPER and...
متن کاملSuprachiasmatic Nucleus Grafts Restore Circadian Behavioral Rhythms of Genetically Arrhythmic Mice
The mammalian master clock driving circadian rhythmicity in physiology and behavior resides within the suprachiasmatic nuclei (SCN) of the hypothalamus. SCN neurons contain a molecular oscillator composed of a set of clock genes that acts in intertwined negative and positive feedback loops [1]. In addition, all peripheral tissues analyzed thus far have been shown to contain circadian oscillator...
متن کاملDirect Association between Mouse PERIOD and CKIε Is Critical for a Functioning Circadian Clock
The mPER1 and mPER2 proteins have important roles in the circadian clock mechanism, whereas mPER3 is expendable. Here we examine the posttranslational regulation of mPER3 in vivo in mouse liver and compare it to the other mPER proteins to define the salient features required for clock function. Like mPER1 and mPER2, mPER3 is phosphorylated, changes cellular location, and interacts with other cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2003